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Abstract

A numerical scheme with hybrid explicit and implicit time stepping in solidification problems is presented. An explicit time stepping
scheme is used for solving coupled temperature and concentration fields, while an implicit scheme is used for solving equations of motion.
The explicit approach results in a local point-by-point coupling scheme for the temperature and concentration fields that uses constitutive
model for back diffusion in solid. The present method offers distinct advantages of simplicity and flexibility in incorporation of micro-
scale models, as demonstrated by the use of a back diffusion parameter in the microsegregation model. Results from the present method
are compared with those in the literature using a fully implicit method, and they show significant improvement in final macrosegregation

prediction.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification of binary mixtures does not exhibit a dis-
tinct front separating solid and liquid phases. Instead, the
solid is formed as a permeable, fluid saturated, crystal-
line-like matrix. The structure and extent of this multiphase
region, known as the mushy region, depends on numerous
factors, such as the specific boundary and initial condi-
tions. During solidification, latent energy is released at
the interfaces which separate the phases within the mushy
region. The distribution of this energy therefore depends
on the specific structure of the multiphase region. Latent
energy released during solidification is transferred by con-
duction in the solid phase, as well as by the combined
effects of conduction and advection in the liquid phase.
Fluid motion may be induced by external means, may
occur naturally by thermal and/or solutal buoyancy forces,
and may also be caused by expansion or contraction of the
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system due to the phase transformation. Concentration
variations are primarily due to differences in the solubilities
of constituents within each phase. Such differences lead to
the selective rejection of constituents at microscopic phase
interfaces. The rejected constituents are transported by
fluid advection and, to a lesser extent, by diffusion within
the phases.

A general solidification system, as seen in Fig. 1, involves
a solid region, a liquid region and a mushy region. Often,
the scale required for the resolution of the solid-liquid inter-
face in the mushy region is several orders of magnitude
smaller than the typical cell size used in a discrete numerical
solution of the governing macroscopic transport equations.
The concept of representative volume element (REV) was
introduced by Ni and Beckermann [1]. Typically a REV is
selected to include a representative and uniform sampling
of the mushy region such that local scale solidification pro-
cesses can be described by variables averaged over the REV.

The combination of the macroscopic transport equa-
tions and the specification of the nature of the REV can
be used to provide a description of a given solidification
system. Fig. 1 illustrates a general alloy system solidifying
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Nomenclature

A permeability constant

a control volume face area (m?)
C solute concentration (wt%)

c specific heat (J/kg K)

D mass diffusivity (m?%/s)

F flux at control volume face

f mass fraction

g liquid fraction

gr gravity acceleration (m?/s)

h enthalpy (J/kg)

m slope of the liquidus line

K thermal conductivity (W/m K)
ko permeability constant

P pressure (Pa)

S source term

T temperature (K)

t time (s)

U velocity (m/s)

Greek symbols

o diffusion parameter

p back diffusion parameter

P thermal expansion coefficient (1/K)
B. solutal expansion coefficient
o density (kg/m?)

pC mixture concentration

pH mixture enthalpy

P variable

r diffusion constant

AH latent heat (J/kg)

At time step (s)

Ax control volume length in x-direction (m)
Ay control volume length in y-direction (m)
A secondary dendrite arm spacing (m)
Subscripts

s solid

1 liquid

T thermal

C solutal

eut eutectic

f fusion

i grid number in x-direction

j grid number in y-direction

old previous time step value

max maximum value

n north face of control volume
S south face of control volume
e east face of control volume
A west face of control volume

Superscripts

ref reference value
k kth phase

s solid phase

n time level

liquid

solid

liquid domains

Mushy region between fully solid and

Distinct solid-liquid
interface only at micro-scale

Fig. 1. A general solidification system.

in a two-dimensional domain. The material in the domain
is initially liquid. Solidification is initiated on cooling the
left wall. The remaining sides of the domain are insulated.
During solidification, three distinct phases can co-exist,
fully solidified region, mushy region and liquid region.
From the momentum transport point of view, the presence

of solid in the mushy region acts as drag on flow. Physi-
cally, the mushy region is a mixture of solid and liquid.
The flow in the mush can be estimated in two ways. The
mushy region can be treated as a porous media where the
solid is stationary and the liquid flows through the porous
structure [5]. This treatment is valid when solidification
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progresses in columnar fashion. Alternatively, the mush
can be considered as a mixture of solid crystals and liquid.
In this case the movement of both the solid and liquid is
permitted and this representation is closer to the equiaxed
mode of solidification. These two physical situations repre-
sent two extremes. In many cases, however, solidification
takes place through columnar as well as equiaxed, i.e. by
columnar mode in the beginning of solidification and by
equiaxed mode in later period. In such cases, a morpho-
logical transition from columnar to equiaxed takes place
during the course of solidification. Therefore, a true repre-
sentation of mushy phase can be through a combination of
Darcy’s law and variable viscosity formulation. Such repre-
sentation would also require a criterion for columnar-to-
equiaxed transition (CET) under transient convection
which is not readily available. Additionally, at high solid
fractions the equiaxed grains consolidate and solid phase
can be treated as stationary with respect to mould. Fully
solidified region, columnar structure of the mushy region,
and consolidated equiaxed zone will move with a pre-
scribed velocity (Uy) if the casting is moving with respect
to inertial frame of reference.

The driving force for the flow in liquid and mushy
region can be thermal and solutal buoyancy, shrinkage
and forced convection. From the above discussion, it is
apparent that during equiaxed solidification, solid grains
in the mushy region can have independent velocity spe-
cially at low solid fraction and this requires the specifica-
tion of an equation of motion for its resolution [2]. An
important consequence of the flow of solid and liquid in
the mushy region is the large-scale transport of the solute
components and as a result — in addition to solute varia-
tions over the sub-REV (microsegregation) — the solute
varies over the domain as a whole (macrosegregation).

A key part in modeling the general system shown in
Fig. 1 is the coupling between the temperature and concen-
tration fields [3-13]. The main variables describing these
fields are found by solving conservation equations on the
macroscale of the REV. A complete resolution, however,
requires a coupling between the solid fraction, liquid and
solid concentrations, and temperature at the sub-REV
scale (local scale) of the dendritic arm spaces. Voller
et al. [14,15] have developed a general numerical approach
for coupling the temperature and concentration fields
which is different from many of the previous schemes [3—
13]. In this approach, an explicit time stepping scheme is
used to solve the thermal and concentration conservation
equations. The disadvantage of this approach is a small
time step for stability but it is offset by a straightforward
numerical scheme that can readily incorporate multi-scale
behavior. The incorporation into the solution algorithm
of local scale microsegregation models that can accurately
account for both back diffusion and coarsening effects was
also demonstrated in a one-dimensional problem involving
the solidification of a binary alloy from below [15]. In such
a test geometry, if the rejected solute is lighter than the sol-
vent, one-dimensional flow, downward towards the chill, is

induced by solidification shrinkage. Accounting for this
flow is straightforward requiring the satisfaction of the
mass conservation. To date the explicit time stepping tem-
perature—concentration coupling of Voller and co-workers
[14] has not been tested in a multi-dimensional geometry,
e.g. a binary alloy in a 2D cavity solidified from a vertical
side. In this case, as noted above, the resulting fluid flow
can be complex and its resolution will require the coupled
solution of the momentum and mass conservation equa-
tions. The present approach, however, is different from
some other approaches reported in the literature pertaining
to incorporation of microscale issues in a macroscopic
framework. For example, in Chakraborty and Dutta [16],
a modified partition coefficient has been used to account
solutal undercooling near the solid-liquid interface. Some
other interesting studies on modeling microscale issues in
a macroscopic framework are reported in [17-20].

The objective of the current work is to investigate the
operation of the explicit time stepping temperature—con-
centration coupling algorithm in the simulation of a side
cooled solidification of a binary-eutectic alloy in a two-
dimensional cavity. In this effort a hybrid approach is used.
The thermal and concentration fields are calculated with an
explicit time stepping and their coupling achieved through
the temperature—concentration algorithm similar to the one
proposed by Voller et al. [14]. On the other hand, the flow
field is solved with a fully implicit time stepping employing
the well-known SIMPLER scheme for the velocity pressure
coupling. The performance of this hybrid scheme is
compared with that of a solution employing fully implicit
time stepping in the solution of all fields. In addition the
flexibility of the hybrid scheme to readily account for
microsegregation and back diffusion is investigated in the
context of published experimental data [21].

2. Governing equations

Using a volume-averaging technique, the general form
of conservation of any scalar variable ¢ for each individual
phase ‘k’ can be written as [1]:

2 (i) + V- (i) = V- (V) + &S (1)

where gy is the volume fraction of the phase k, I' is the cor-
responding diffusion coefficient, and S; is a representative
source term. Eq. (1) reduces to the form of well-known sin-
gle-phase conservation equations, when summed over all
the phases for the conservation of various quantities. For
this purpose, the equivalent mixture density and velocity
are defined as follows:

P=) P& = dfi (2)
T T
where f}. is the mass fraction of phase k.

If we make an extended Boussinesq approximation by
neglecting solidification shrinkage, the equations of motion
for the liquid phases for a fixed columnar microstructure
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can be developed in terms of the interdendritic area aver-
aged flow, U(U, V), as

U= (1 7gs)ul7 (3)

where u is the actual fluid velocity.

The equation of continuity and motion for the interden-
dritic liquid velocity, U (U, V), can be written in the general
form as follows:

Continuity:

LY (v =0 @

U-momentum:

0 op
3 (MU) + V- (pUU) = ==+ V- [(1 - g,)uVU]
— AU (5)
V-momentum:
Qo)+ V- (o) = =L L v [(1 = g)uv V]
at pl pl - ay gs H
—pi(1 —g)gr — AV (6)

In the mushy region, additional source terms (last terms
in Egs. (5) and (6)) are there to account for the friction
between liquid and solid fractions. The value of ‘A4’
depends upon mush model used to represent porous media.
In practice, the effect of the source term given by Eq. (6) is
as follows. In fully liquid domain (g5 = 0), the source term
is zero, and has no influence. In elements undergoing phase
change, this term dominates over transient, convective and
diffusive components of the momentum equation, thereby
forcing them to imitate the porous media model. In fully
solid elements (g; = 1), however, an extremely large value
of source term overweighs forces velocities to be zero. With
the Boussinesq assumption invoked, the body force term in
the y-momentum equation is modeled as

pgr = pitgr(Br(T — T™) + B.(C1 = C1%)), ()

where pi is a constant reference density, fr is thermal
expansion coefficient, and f. is the solutal expansion
coefficient.

Mixture macroscopic conservation equations for heat
and solute are derived similarly by adding the two-phase
averaged equations. To begin with, we define the solid
and liquid phase enthalpies as:

hs - CST; (8)
=T+ AH, 9)

where ¢; and ¢ are the solid and liquid specific heats (as-
sumed constant in respective phases), respectively. With
the above definitions, the mixture enthalpy can be ex-
pressed as

[PH] = gipshs + (1 — g,)pi/n (10)

Neglecting dispersive fluxes, using Fourier’s law and
expanding the phase enthalpies in terms of temperature,
the mixture energy conservation equation becomes

0[pH]
ot

where K is a phase averaged conductivity. A linear varia-
tion of conductivity with volume fractions of individual
phases is expressed as

K:gsKS+(1 _gs)[(1 (12)

As diffusivities in liquid phase can be considered to be
much higher than in solid phase, it may be reasonable to
assume that the concentrations of the alloy components
in the solid will be the only microscopic variables. Defining
the concentration of the kth component in solid phase as
C*, the macroscopic solid concentration variable can be
developed by performing volume averaging over the solid
phase in the REV, i.e.

&s
(Cry :gl/ chdr, (13)
0

N

where dI'" is an elemental solid volume. Accordingly, the
mixture concentration can be expressed as

[pCI" = gup (CE)* + (1 — g,)piCy (14)

Neglecting dispersive and macroscopic diffusion fluxes, the
mixture solute conservation equation takes the following
form

d[pC*

= +V-(pUCH =0 (15)

3. Coupling relationships

Coupling relationship will be required to obtain solution
for thermal and solute equations. In the present work, the
coupling relationship formulated by Voller et al. [14] is
used. The definitions of the mixture enthalpy [pH], and
the mixture concentration [pC] gives two relationship equa-
tions. The third condition is obtained by imposing thermo-
dynamic equilibrium at the solid-liquid interface, while the
fourth relationship is obtained from the microsegregation
model. The microsegregation model describes the local
scale redistribution of solute in the REV. Following the
definition of macroscopic solid concentration given in Eq.
(13), the rate of change of a solute species in the solid frac-
tion of the REV can be written as

dlg,(Co)°] _ dg, = [* oC,
G = kGt /0 5 dr (16)

On the right side of Eq. (16), the first term accounts for the
partitioning of a solute species at the solid-liquid interface
in the REV, while the second term accounts for the back
diffusion of solute into the solid. The back diffusion term
in Eq. (16) can be expressed more conveniently in an
approximate form [22]:
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& 0C, dC1
17
A o (17)

In this approximation, following the arguments laid out in
[22], the f term can be modeled as

8thg_4/3 +0.2)2 -
8Dt,g " +1.272

(18)

where D is the solid diffusivity, / is the secondary arm spac-
ing and t; is the solidification time; this model has been
shown by Voller et al. [14,15] to provide an accurate
description of microsegregation and coarsening processes,
consistent with previous models in the literature. In this
way Eq. (16) becomes

dlg,(Cs)’] dg, d¢
T +ﬂgs par dl

where 0 < <1 is a diffusion parameter accounting for
back diffusion and arm coarsening in the REV. Note that
the term f changes dynamically as the solidification evolves
and in calculations estimates of ¢, at a given point can be
approximated from the solidification time of the nearest
fully solid neighboring point (see [15]).

Another coupling relationship can be obtained from the
equilibrium phase diagram:

T =G(C) (20)

= kparCl (19)

Thermodynamic equilibrium a solid-liquid interface also
gives

C, = kpurCy (1)

If we assume a linearized phase diagram of a binary-eutec-
tic alloy, the temperature and liquid concentration are re-
lated through the liquidus line

T = Tf - mCl (22)

where T} is the fusion temperature of the pure solvent and
m is the slope of the liquidus line. The concentration in the
primary solid phase, at the solid-liquid interface, is
C; = kparCi. When the eutectic concentration is reached,
further solidification occurs isothermally at the eutectic
temperature, T = Tey;.

4. Numerical details

In the present study, the temperature—concentration
coupling used is similar to that described in Voller et al.
[14]. For a full description of the algorithm one may refer
o [14]. A flow chart of the algorithm is shown in Fig. 2.
In present study, an equispaced structured grids is used.
Initially [pH] and [pC] are solved using the explicit scheme.
Subsequently, coupling equations are solved, undergoing
inner iterations. Finally, flow equations are solved using
an implicit scheme using the SIMPLER algorithm [23].
The discretized energy equation using an explicit time step
scheme and finite difference method has the following form:

Start

Initialize variables at
time=0

5
Solve energy [pH] with
explicit time stepping

Explicit
scheme l
Save old
Solve solute [pC] with variables
explicit time stepping
v
Using coupling equations
iterate to get f; & C;
v Go to next
Incorporate boundary time step

condition ‘Eor U&Vv

Coefficients for U, V and
p using FVM formulation
and solve using SIMPLER

Yes

Implicit
scheme

Fig. 2. Flow chart of the program.

PHI = [pHI, + 5 K(T7 = 2T3, + 77
+asK(T}, = 2T}, + T)

A c{(TlIFe, O = T7yy I = Fe, Of))

(,1,||Fw,0|| Tl = Fw, 01D}
— a (T IF, Ol = T3 || = Fa, O)
(T3 llF Ol = T30 = £, 00}
—mAH{([[Fe, 0] = Fe,0]))
—(I1Fw, 0l = I = Fw, 0[1)}
— A AH{([[Fa, Ol = Fa, OI])
—(IIFs; Ol = I = £+, 0[)}

l+|])

where, symbol || ... .|| represent maximum of two variables
and F, = pea U, is flux at east control volume face (flux
equations at other control volume face have similar form).

Similarly, the discretized concentration equation has the
following form:

[oCT = [pClL = 2A(ChIFe Ol = Gy | = Fe, O
—(Ciy -IIFW70|| Ciiil = Fw, 01}
— 2 {(CLIFw, Oll = Cf [l = Fi, OI])
—(CiyalIFs, Ol = Gl = £, 00D}

The momentum (U, V) equations along with the continuity
equation are discretized using a finite volume method
(FVM) as described in Patankar [23]. These equations are
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discretized using implicit time stepping scheme. The
momentum and continuity equations are solved using
SIMPLER algorithm [23] and tri-diagonal matrix solver.
The convergence criteria for implicit iteration loop is
when/(¢ — dota)/ Pmax| < 107>, where ¢ stands for solved
variables at a grid point at the current iteration level,
¢o1q represents the corresponding value at the previous iter-
ation level, and ¢, 1s the maximum value of the variable
at the current iteration level in the entire domain. The con-
vergence criteria for the iterative loop that solves the cou-
pling equations is when the correction in the nodal solid
fraction value satisfied the condition |g — goa <107*
where g is solid fraction value at current iteration and gjq
is solid fraction value at previous iteration.

5. Results and discussion
5.1. Numerical validation and parametric study

The test problem is taken from the existing literature [5].
We consider a two-dimensional rectangular cavity filled
with a binary mixture (Fig. 3), which is initially liquid
and uniform in temperature and composition. At time
t =0, the temperature of the left vertical boundary is
instantaneously dropped and maintained at a temperature,
Teold» Which is below the liquidus temperature, 7. All
other boundaries remain insulated. A zero mass flux condi-
tion prevails on all the walls of the cavity. The fluid flow is
assumed to be laminar and unsteady. The binary fluid is
considered to be Newtonian and incompressible, and its
thermophysical data, given in Table 1, approximate those
of aqueous ammonium chloride solution. The mushy
region is modeled using Carman—Kozeny relations where
parameter ‘4’ is defined as follows,

2

A=k g753
( 1 - gs)
/ insulated
y —
At t =0 liquid
T =Teou at Tingat, Cinitial
att>0 W
|
N \insulated
[
7, ——

| W]
insulated

Fig. 3. Schematic sketch of the test problem.

Table 1
Process parameters and thermophysical properties of ammonium-chloride
system

Initial and boundary conditions

Cavity dimensions w=0.025m
Initial liquid concentration Cingiat = 0.1 kg/m>
Initial temperature Thot = 600 K

Left wall temperature for time > 0 Teolg =400 K

Thermophysical properties
Specific heat

Thermal conductivity
Density

Liquid viscosity

Species diffusion coefficient
Latent heat

Permeability coefficient

¢, = 3000 J/kg K
K=04W/mK

p = 1000 kg/m>
p=10x10"kg/ms
D=48x10""m%s
H=3x10J/kg

ko =2 x 106 kg/m®s

Thermal expansion coefficient Br=4x107°K!
Solutal expansion coefficient s =0.025
Eutectic temperature Teue =250 K
Eutectic concentration (mass fraction) Ceut =0.8

Melting point of pure material Tm =630 K
Equilibrium partition ratio kpar = 0.3

With this condition, solidification of the alloy immediately
commences at the cold boundary, and at a later times, three
regions will exist in the cavity; a full solid region, a mushy
region, and a full liquid region. The grid size used for sim-
ulation is 40 x 40 (same as reported in [5]) and time step
used is 0.0025 s.

5.1.1. Evolution of double-diffusive convection and
macrosegregation

Double diffusive convection will result in this case, as the
flow will be influenced by temperature gradients (caused by
the thermal boundary conditions) as well as solutal gradi-
ents (caused by solute rejection at the solid-liquid inter-
face). The final pattern of macro-segregation will depend
on the evolution of flow field during the solidification pro-
cess. Thermally driven flow will dominate initially, as high
temperature gradients exist and the fluid composition is
uniform and close to the initial concentration. As solidifica-
tion proceeds, however, the thermal gradients decay and
solute concentration gradients build up. For studying the
evolution of the flow field and its effect on macrosegrega-
tion, we take snap shots of the flow field at different time
levels. Immediately after lowering the left wall temperature
to T,o14, thermal gradients cause a strong counterclockwise
flow field. Fig. 4 shows the streamline pattern at z = 100 s.
At later times, however, the thermal gradients weaken con-
siderably and solute gradients build up. An indication of
this phenomenon appears in the streamline pattern at
250 s (Fig. 5), which shows a small recirculation cell in
the opposite direction (clockwise) at the lower left corner
of the cavity. This solutally driven recirculation cell results
from the steep concentration gradients near the base of the
cavity. With further progress in solidification, thermal
buoyancy weakens and solutal effects begin to dominate,
leading to a reversal of circulation pattern at z = 500 s, as
shown in Fig. 6.
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Fig. 4. Streamlines and solidification front at time = 100s (maximum
value = 0.0035118, minimum value = 0.0).

——444)___,___,‘____,__9'07_,.__

".
1.
|

Fig. 5. Streamlines and solidification front at time =250s (maximum
value = 0.0018846, minimum value = —0.00017434).

5.1.2. Comparison of present approach with existing fully
implicit method

Fig. 7 shows macrosegregation pattern at the end of the
solidification process. As observed in Fig. 7a, areas of posi-
tive segregation are located along the right of the upper por-
tion of the cavity, which is caused by the solutally driven
counter-clockwise circulation towards the later stages of
solidification. Fig. 7b shows the corresponding results in

\
|

Fig. 6. Streamlines and solidification front at time = 500s (maximum
value = 5.63 x 10™°, minimum value = —0.00018915).

the existing literature using a fully implicit method [5]. In
order to benchmark the performance of the present method,
we simulated the same test case using a fully implicit
method with temperature-solute coupling modeled using
the lever rule. Simulations were carried out on a machine
with Pentium 4 (3.2 GHz, 1GB RAM) processor, with grid
size and convergence criteria described in Section 4.

For simulation till time = 3000 s, fully implicit method
took about 3 h run-time while explicit-implicit method
took about 4 h run-time, where results by both methods
show similar macrosegregation prediction. Hence, there is
some but not a significant loss in efficiency in using the
explicit temperature-concentration coupling. It needs to
be emphasized, however, that the assumption of a Lever
rule is a very basic means of accounting for the local scale
(dendrite arm spacing) redistribution of solute. The pro-
posed explicit concentration—temperature coupling is
expected to prove to be an advantage when the microsegre-
gation is more detailed, e.g. including such effects as back
diffusion in to the solid phase.

5.1.3. Effect of back diffusion

A distinct feature of the present method is its local nat-
ure of the thermo-solutal coupling, and it offers advantages
of simplicity and flexibility in moving towards more com-
plex systems (i.e. incorporation of micro-scale models).
The present explicit-implicit hybrid scheme can be used
to make a quantitative assessment of the effect of back dif-
fusion on macrosegregation predictions. Consider the sys-
tem where segregation is due to thermo-solutal
convection, as described in previous section. Comparison
with the cases of no back diffusion =0 and complete
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I:I Postive Segregation
CI Negative Segregation

=\

‘ﬂm Postive Segregation

D Negative Segregation

¥
R :&;IT;Z;,I,,/J‘WW

7

(a) Present Simulation

Model C

0.06 0.06

(b) Previous Simulation [5]

Fig. 7. Comparison of macrosegregation prediction with existing numerical simulation [5].

solid state diffusion f =1 are shown in Fig. 8. Concentra-
tion profile at the end of solidification is shown along the
vertical direction for x = 0.06 m. In case of back diffusion,
solute diffusion occurs from solute rich liquid into the
solidified region. This leads to transport of rejected solute
from liquid into solid. Hence, the solute concentration is
higher in the case where back diffusion is non-zero, except
at the top portion of the cavity. At the top of the cavity,
there is a larger positive segregation for this case (see
Fig. 7), as more solute is available during the closing stages
of solidification.

5.2. Case study: solidification of Pb—15wt%Sn in a square
cavity

The model is subsequently used to simulate solidifica-
tion of Pb—15wt%Sn alloy in a square cavity having dimen-
sions 0.1 m x 0.1 m. The vertical boundaries are subjected

to prescribed temperature conditions, and the horizontal
boundaries are kept insulated. The melt, with an initial
superheat, is poured into the cavity, where it starts solidify-
ing from a vertical boundary. For this test case, experimen-
tal data is reported in literature [21] along with simulation
results assuming Schiel model for microsegregation. The
variations of boundary temperatures with time are shown
in Fig. 9, in accordance with the experimental data
reported in [21]. The relevant thermophysical properties
of Pb—15wt%Sn alloy are listed in Table 2 [21]. The mushy
region (parameter ‘4’) is modeled using West permeability
relations as reported in [21]. The grid size used for simula-
tion is 40 x 40 (same as reported in [21]) and time step used
is 0.0025 s.

5.2.1. Macrosegregation predictions
Since the cavity is side cooled, thermal buoyancy effects
tend to push the fluid down the phase changing interface.
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Fig. 8. Macrosegregation along y axis for x = 19 mm.
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Fig. 9. Cavity left and right wall temperature measured by Shahani et. al.
[21].

Table 2
Thermophysical properties of Pb—15wt%Sn

Specific heat (c) 154.6 J/kg
Thermal conductivity of solid (Kj) 34.97 W/m K
Thermal conductivity of liquid (K)) 17.8 W/mK

10,100 kg/m?

2.53 x 1073 kg/ms
1 x 1077 m%/s
2.47 x 10* J/kg

Density (p)

Viscosity (u)

Liquid diffusion coefficient (Dy)
Latent heat of fusion (AH)

Thermal expansion coefficient (fr) 123 x 1074 K™!
Solutal expansion coefficient (fs) 0.339

Eutectic temperature (7ey) 456.14 K
Eutectic concentration (Cey,) 0.619
Equilibrium partition coefficient (kp,,) 0.31

This leads to the formation of a large vortex rotating in the
clockwise direction at the initial stages of solidification.

However, as solidification proceeds, Sn is rejected into
the liquid, which is lighter than the solvent (Pb) and hence
tends to move up. Hence, thermal and solutal buoyancy
effects oppose each other for the nominal composition
15wt%Sn in the alloy. With further progress in solidifica-
tion, solutal buoyancy effects gain prominence, as in the
case of hypereutectic ammonium chloride solution dis-
cussed previously in this section.

Figs. 10-12 show the final macrosgregation profiles at
different vertical sections of the cavity. The results obtained
by the present model (using constitutive model for back
diffusion) are compared with the experimental observations
[21] and with the corresponding numerical results obtained
using Schiel model for microsegration. From these figures
it is evident that there is a positive macrosegregation at
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Fig. 10. Final macrosegregation for Pb—15wt%3Sn alloy at x = 9.47 cm.
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Fig. 11. Final macrosegregation for Pb—15wt%Sn alloy at x = 8 cm.
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Fig. 12. Final macrosegregation for Pb—15wt%Sn alloy at x = 3.5 cm.

the top of the cavity, and negative macrosegregation in the
rest of the cavity. Figs. 10 and 11 depict concentration vari-
ations along vertical lines located at x=9.47cm and
x = 8.0 cm, respectively, corresponding to the region close
to the right wall. Near the right wall, solidification com-
mences from the bottom region and progresses towards
the top, because of the nature of melt convection. As a
result, it can be expected that the bottom region will have
negative segregation and the top region will experience
positive segregation. The negative segregation in the bot-
tom region will be diminished by back diffusion effects, as
observed in Figs. 10 and 11. The positive segregation in
the upper region of the cavity is enhanced by the melt con-
vection, which carries the excess solute in a clockwise direc-
tion to the top by thermal buoyancy. At later stages of
solidification, however, the thermal buoyancy is opposed
by solutal buoyancy. With back diffusion, the strength of
solutal buoyancy is reduced, as there is less solute build-
up at the interface. Hence, positive segregation at the top
region of the cavity is under-predicted by Schiel’s microseg-
regation model, as observed in Figs. 10 and 11. It is evident
from the figures that the results obtained from the present
numerical simulation incorporating constitutive model for
back diffusion in solid are closer to the experimental
results, as compared to the previous numerical simulation
[21]. Fig. 12 shows macrosegregation pattern along a verti-
cal line located at x = 3.5 cm. This line is closer to the left
wall, and hence corresponds to a region experiencing solid-
ification at an early stage. Although the trends predicted by
the models agree with that of experiment, the model with
back diffusion is found to under predict solid concentration
near the bottom wall. At early stages of solidification, the
region close to the left wall experiences solutal buoyancy
forces opposing the downward thermally driven convec-
tion. This effect is more pronounced in the case of Schiel’s

model (without back diffusion), leading to more solute
build-up at the interface and, consequently, higher concen-
tration in the solid. A feature of the new results are the fluc-
tuations near the top of the mold. The application of finer
meshes of (72 x 72) and (120 x 120) gave similar results
and indicated that the fluctuations could be attributed to
the formation of “A” segregates.

6. Conclusion

In the present formulation, a numerical scheme with
hybrid explicit and implicit time stepping in solidification
problem is used. An explicit time stepping scheme is used
for solving coupled temperature and concentration fields,
with a coupling scheme for the temperature and concentra-
tion fields similar to that given in literature. After obtaining
solution for temperature and concentration fields, the
equations of motion are solved using a pressure based
implicit method. Results from the present method com-
pared well with those of a fully implicit method for the case
of solidification in presence of double-diffusive convection
in a square cavity. The flexibility of the present partial
explicit scheme in incorporating complex microscale mod-
els is demonstrated by using a back diffusion parameter,
and then numerically studying its effect on macrosegrega-
tion. Subsequently, the model is applied to the case of
solidification of a Pb—Sn alloy in a square cavity. The sim-
ulation results are compared with the corresponding exper-
imental results reported in the literature, and the present
model shows significant improvement in macrosegregation
predictions.
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